jueves, 2 de diciembre de 2010
sábado, 20 de noviembre de 2010
domingo, 25 de julio de 2010
New 500-V Vishay Siliconix N-Channel Power MOSFETs Feature Low 0.555-Ω On-Resistance and Improved Gate Charge of 48 nC in TO-220,TO-220 FULLPAK, and D
The low on-resistance of the SiHP12N50C-E3 (TO-220), SiHF12N50C-E3 (TO-220 FULLPAK), and SiHB12N50C-E3 (D²PAK) translates into lower conduction losses that save energy in power factor correction (PFC) boost circuits, pulsewidth modulation (PWM) half bridges, and LLC topologies in a wide range of applications, including notebook computer AC adapters, PC and LCD TVs, and open-frame power supplies.
In addition to their low on resistance, the devices feature a gate charge of 48 nC. Gate charge times on-resistance, a key figure of merit (FOM) for MOSFETs used in power conversion applications, is a low 26.64 Ω-nC.
The new n-channel MOSFETs are produced using Vishay Planar Cell technology, which has been tailored to minimize on-state resistance and withstand high energy pulses in the avalanche and commutation mode. Compared to previous-generation MOSFETs, the SiHP12N50C-E3, SiHF12N50C-E3, and SiHB12N50C-E3 offer improved switching speed and losses.
The devices are compliant to RoHS Directive 2002/95/EC and 100 % avalanche- tested for reliable operation.
Samples and production quantities of the new power MOSFETs are available now, with lead times of 8 to 10 weeks for larger orders.
Vishay Intertechnology, Inc., a Fortune 1,000 Company listed on the NYSE (VSH), is one of the world's largest manufacturers of discrete semiconductors (diodes, MOSFETs, and infrared optoelectronics) and passive electronic components (resistors, inductors, and capacitors). These components are used in virtually all types of electronic devices and equipment, in the industrial, computing, automotive, consumer, telecommunications, military, aerospace, power supplies, and medical markets. Vishay's product innovations, successful acquisition strategy, and "one-stop shop" service have made it a global industry leader. Vishay can be found on the Internet at http://www.vishay.com.
Vishay Siliconix Releases Industry’s Smallest and Thinnest N-Channel Chipscale Power MOSFET With 0.64-mm2 Area
As portable devices become more compact, the size of components becomes critical, as PCB areas are extremely limited due to the space taken by keypads and batteries. With its ultra-small outline and height, the Si8800EDB is 36 % smaller and 11 % thinner than the next smallest n-channel device in a chipscale package, allowing for the creation of more compact end products with increased functionality.
The chipscale packaging of the Si8800EDB provides an extremely low on-resistance per area due to its packageless technology and increased die area. The MOSFET offers maximum on-resistance values of 80 mΩ at 4.5 V, 90 mΩ at 2.5 V, 105 mΩ at 1.8 V, and 150 mΩ at 1.5 V.
Typical applications for the new device will include load switches and small signal switching in portable devices such as cell phones, PDAs, digital cameras, MP3 players, and smart phones. The Si8800EDB’s low on-resistance prolongs battery life between charges in these products.
The Si8800EDB features typical ESD protection of 1500 V, is compliant to RoHS Directive 2002/95/EC, and is halogen-free according to the IEC 61249-2-21 Definition.
Samples of the new power MOSFET are available now. Production quantities will be available in Q2 2010, with lead times of 16 weeks for larger orders.
Vishay Intertechnology, Inc., a Fortune 1,000 Company listed on the NYSE (VSH), is one of the world's largest manufacturers of discrete semiconductors (diodes, MOSFETs, and infrared optoelectronics) and passive electronic components (resistors, inductors, and capacitors). These components are used in virtually all types of electronic devices and equipment, in the industrial, computing, automotive, consumer, telecommunications, military, aerospace, power supplies, and medical markets. Vishay's product innovations, successful acquisition strategy, and "one-stop shop" service have made it a global industry leader. Vishay can be found on the Internet at http://www.vishay.com.
PROBADOR DE TRANSISTORES MOS-FET
Así que utilizaremos el oscilador para generar la frecuencia que nos permita averiguar si el transistor bajo prueba es capaz de amplificar dicha señal, si es así transistor en buen estado, en caso contrario, adquirir otro.
Funcionamiento:
Como se apuntaba, el circuito probador consiste en un oscilador astable formado por las dos puertas inversoras ICA-ICB en el esquema y cuya frecuencia de oscilación viene determinada por los valores de R1 y C1, en este caso una frecuencia cercana a 120 Hz para evitar en lo posible el molesto destello.
Si se desea modificar la frecuencia, puede se hacer mediante el ajuste del potenciómetro R1, dispuesto para este fin. La frecuencia puede ser calculada por : f =1 /( 0,7 x R1 x C1), donde R1 viene en Ohms y C1 en Faradios.
Conviene que C1 sea menor de 10uF para evitar en lo posible las "elevadas corrientes de fugas" que se presentarían, comparables a la corriente inicial de carga de este condensador en muchos casos. El condensador, se comporta como un cortocircuito. Debido a que, el CI4049B dispone de 6 inversores, se han utilizado pares en paralelo como se puede ver, de esta forma se obtiene más intensidad y cargabilidad, asegurando la corriente necesaria para excitar lo LED's.
La oscilación obtenida, ataca la entrada de un par de inversores separadores para no cargar al oscilador y se dirige los terminales del transistor fet, aunque con un desfase de 90º, mediante otro par de inversores, asegurándonos un paso de corriente D-S (drenador-sumidero) en cada semiperíodo de la oscilación y S-D en el semiciclo siguiente, siempre que se mantenga activo el pulsador, esto excitará el LED correspondiente indicando así su polaridad (Canal N o Canal P) y si está en buen estado.
Asignatura: EES.
Alumno: Pedro Jose Contreras Urbina
Fuente:http://www.fortunecity.es/felices/barcelona/146/3ds/tutores/mosfet_test.html
sábado, 24 de julio de 2010
Especial: Como hacer un aerogenerador (molino de viento o turbina eolica).
Las características principales de esta turbina eólica pueden variar según el tipo de motor o generador que le instalemos, pero normalmente será de unos 12v de tensión eficiente. Disfrutad de este invento haciendolo tanto como yo traduciendolo para vosotros:
Después de muchas búsquedas de información por todo Internet, me dí cuenta que todos los diseños tenían cinco cosas en común:
Un generador.
Palas.
Sistema de orientación hacia el viento (Timón).
Una torre para elevar la turbina hacia dónde esté el viento.
Baterías y un sistema de control eléctrico.
Organizando un poco el tema, conseguí reducir el proyecto a tan sólo cinco sistemas, que atacando poco a poco y uno por uno, no resulta del todo complicado. Decidí comenzar con el generador. Observando los proyectos de otras personas por Internet, me dí cuenta que había gente que decidió hacerse su propio generador, otros que usaban la energía residente de motores de imán permanente, y otros, simplemente se buscaban un generador. Así que decidí ponerme a buscar.
Mucha gente usaban los motores de las unidades de cinta de ordenadores antiguos. Los mejores para esto, son los Ametek de 99 voltios en continua que funcionan muy bien como generadores. Por desgracia, son muy difíciles de encontrar, aunque siempre puedes probar con otros modelos parecidos de Ametek (En eBay, por ejemplo). Aquí hay un sitio (en inglés) que habla de los defectos y virtudes de los Ametek como generadores, muy completo la verdad.
Existen muchas otras marcas y modelos de motores de imán permanente que no sean los Ametek, pero puede que no trabajen igual de bien, ten en cuenta que los motores de imán permanente no fueron diseñados para ser generadores. Los motores normales, cuando se usan como generadores, tienen que ser impulsados mucho más rápido que su velocidad nominal de funcionamiento para alcanzar una producción parecida a la de su funcionamiento normal. Con estos datos, podemos sacar una conclusión, lo que estamos buscando, es un motor que de mucha tensión con pocas revoluciones. Alejarse de motores con muchas revoluciones y poca tensión, porque no servirá para nada. Lo que buscamos, más o menos, es un motor que nos de unos 12 v de tensión útil con unas revoluciones muy bajas (325 rpm). Cuando lo tengáis, para hacer la prueba, conectarlo a una bombilla de 12 v y darle un fuerte giro al motor con la mano, si de verdad nos funciona, la bombilla deberá encenderse como normalmente.
MULTIPLICADOR ANALOGICO CON MOSFETS.
Asignatura: EES.
Alumno: Pedro Jose Contreras Urbina
Fuente:http://patentados.com/invento/multiplicador-analogico-con-mosfets.html
Que es mejor un ampli a valvulas o a transistores...
MOSFET Vs. ZERO FEEDBACK
Hoy la discución continua pero restringida a la cantidad de realimentación.
La realidad es que se pueden obtener excelentes resultados con una sinergia de realimentación local y realimentación global.
Para ampliar esto último exploremos un poco el concepto de "retardo entre la salida y la entrada". La energía electromagnética se desplaza dentro de un conductor a una velocidad de 230.000 km/s. Esto quiere decir que un cable de 23 cm de largo (distancia comparable a las dimensiones de un amplificador) es atravesado por una onda electromagnética en 1 nanosegundo, el cual es el período de una señal de 1Ghz. Una señal de 20.000 Hz tiene una longitud de onda dentro de un conductor de 11,5 Km o 11.500 metros. Por lo tanto el concepto de "retardo" no es aplicable a un amplificador de audio, sino intente colocar un cable 11.500 m de largo dentro de su amplificador.
Cuando en un artículo sobre realimentación o factor de amortiguamiento Ud. lea "retardo" lo que debe leer es "fase", y la fase es inherente a las reactancias propias de los dispositivos de entrada, drivers y salida y las características de transferencia de los realimentadores locales y globales.
No puede evaluarse con seriedad si la realimentación es mucha o poca si no se tiene en cuenta que tipo de dispositivos y topologías están involucradas en el diseño.
Hagamos Historia:
Los problemas con los amplificadores de principio de los años 70 son dos: el criterio de diseño y los dispositivos semiconductores con que se contaba.
Se consideraba a un amplificador de audio como un amplificador operacional, es decir alta ganancia y un polo dominante, en general en la etapa de entrada, que hacia al amplificador estable al cerrar el lazo en cualquier condición. Es más, vemos en muchos diseños de la época un operacional, tipo UA741, a la entrada del circuito para aprovechar el par diferencial y el polo dominante.
Sabemos que un polo dominante a baja frecuencia, generalmente 10Hz, trae dos problemas: uno compuesto por dos fenómenos de naturaleza semejante, el slew-rate y el recorte por intermodulación, y el otro, la degradación del factor de amortiguamiento por la caida de la ganancia de lazo a frecuencias medias.
Se debe tener en cuenta, para el correcto entendimiento, que estos procesos dinámicos, como el slew-rate y el recorte por intermodulación, son fenómenos independientes de la realimentación pues, al presentarse, la realimentación esta cortada (ver*)
Para solucionar estos problemas se modificó el criterio de diseño. Hoy se busca que el ancho de banda de potencia, es decir a máxima excursión de tensión, sea mayor que el de pequeña señal, es decir cuando cae 3db de frecuencias medias.
Para conseguir este criterio hace falta dos cosas: en primer lugar par diferencial de entrada con componentes discretos, resistores degeneradores de emisor, o sea realimenación local y apropiada corriente de polarización(ver*) y en segundo lugar dispositivos excitadores y de salida muy rápidos, es decir MOSFETs, a fin de correr el polo de la etapa de entrada, que ya no es dominante, hasta aproximadamente 15000 Hz.
Con estos dos criterios de diseño, el amplificador con realimentación múltiple con componentes discretos y transistores MOSFETs a la salida es la mejor opción como etapa de potencia de audio al día de hoy.
*Un análisis muy completo puede verse en Gray & Meyer "Analysis and Design of Analog integrated Circuits" John Wiley and Sons. 1977 pag. 541 y siguientes
Asignatura: EES.
Alumno: Pedro Jose Contreras Urbina
Fuente:http://www.vn-amps.com.ar/zero.htm
amplificador de audio de 25w con salida mosfet
Para funcionar eficazmente añadir un potenciómetro de 5K un extremo conectado a la entrada de audio la pata de en medio del potenciómetro conectado al C1 y el otro extremo a tierra esto es prácticamente obligatorio para este circuitoQ6 y Q7 debe tener disipadores pequeñosQ8 y Q9 se debe montar en disipadores de calor.(apropiados)Ajuste R11 para que no haya ruido, ajustar, ajustar la corriente de 100 mA, verificar el consumo en serie con el desagüe de Q8 sin señal de entrada. el trimer (R11) va conectado la pata de el centro conectado con uno de las extrmos del trimer para que pueda variar la corriente.
Componentes:
Q1-Q5______BC558B 45V 100mA Low noise High gain PNP transistors
Gracias espero su pronta respuesta.
Nota: el potenciometro de 5 K es obligatorio en el circuito gracias. haaaa y la tableta si es posible debe de ser de 6cm de amcho y 8cm de largo muchisimas gracias lo vuelvo a poner por que el otro un capacitor y una resistencia no estaban conectados a nada gracias a ahora les añado lo del potenciometro que va a la entradaAsignatura: EES.
Alumno: Pedro Jose Contreras Urbina
Fuente:http://www.circuitosimpresos.org/2010/07/01/amplificador-de-audio-de-25w/
Control PWM de motores con MOSFETs
El conocido y famoso “puente H” o “H bridge” siempre es la solución en sistemas donde el sentido de giro es una necesidad de operación. Sin embargo, el mundo real y físico nos presenta incontables dificultades a la hora de operar el puente H. Comenzando por la inercia del sistema mecánico, pasando por la velocidad de respuesta y terminando en el proceso de frenado y detención apropiados, encontramos la mayoría de los inconvenientes que han hecho abandonar a muchos entusiastas que se inician en el mundo de la robótica y la mecatrónica. Veamos juntos un poco de teoría y práctica de este dispositivo que moverá los motores en nuestros futuros montajes.
Mediante este circuito es posible controlar motores de corriente continua inyectando una señal PWM que podemos generarla con un microcontrolador.
El proyecto basa el control de la carga mediante un puente H construido alrededor de MOSFETs. Su implementación es muy sencilla y el autor pone a disposición el material completo: diagrama esquemático, listado de componentes, archivos PCB.
Asignatura: EES.
Alumno: Pedro Jose Contreras Urbina
Fuente:http://www.automatismos-mdq.com.ar/blog/2010/03/control-pwm-de-motores-con-mosfets.html
miércoles, 21 de julio de 2010
AMPLIFICADOR S-Sub Mosfet
Un día insolé unas PCBs y por una causa indeterminada parte de una PCB de un S-SUB encargado salió mal. Se corrompió la laca de todo un lado, justo el de la etapa salida, y justo sólo su parte. Como el resto había salido bastante bien pensé en acoplar una etapa de salida simple, ya que necesitaba un amplificador para hacer evaluaciones subjetivas de sonido, junto al monitor.
El resultado fue el S-SUB versión MOSFET, no puede haber nada más sencillo que una etapa de salida push-pull en drenador común con mosfet.
El circuito empleado es casi el mismo que en el S-SUB, pero con alguna modificación resultante de la etapa de salida empleada. También se modifican algunos elementos de ganancia y compensación en frecuencia.
A la derecha se puede observar el nuevo circuito.
Topologia
Aunque a priori resulte sencillo, una etapa de salida con dos transistores "gordos" y unas resistencias, en la práctica no lo es tanto, de hecho tuve que hacer una PCB aparte porque además incorporé una limitación en corriente.
Lo primero es que la impedancia de salida de la etapa de ganancia en voltaje es muy alta, y la capacidad de entrada de los mosfet también. En realidad no es mayor que la de los BJT de potencia (1500-3000pF), pero si hay una característica diferente: como no es necesario un transistor driver, la EGV lidia diréctamente con esa capacidad. Tenemos que esa capacidad en colaboración con la alta impedancia de salida de la EGV forman un polo (comportamiento de filtro paso bajo) que crea un desfase de 90º. Si a eso le añadimos el desfase resultante de la compensación en frecuencia, otros 90º tenemos 180º que invierten la fase a la salida. En ese momento la realimentación negativa deja de ser "negativa" y pasa a ser positiva, por lo que el amplificador se vuelve inestable y tiende hacia los raíles de alimentación, y en condiciones adecuadas oscila (es lo más normal).
Esto se evita degenerando el polo, añadiendo unas resistencias en serie con las puertas de los transistores MOS de salida. A frecuencias de audio ésta técnica no tiene ningún efecto pernicioso en el dinamismo.
Por otra parte, el coeficiénte térmico de los mosfet es en principio negativo, por utilizar portadores de carga que no se generan térmicamente (es uno de los motivos de que no sufran de ruptura secundaria). Por lo que tengo entendido a día de hoy, hay diferencias entre el coeficiénte térmico del voltaje de estrangulamiento y la transconductancia. La transconductancia disminuye con la temperatura, por lo que ese motivo permite colocarlos en paralelo e idealmente permite que la etapa prescinda de compensación térmica.
En los últimos tiempos, prácticamente la única aplicación que usa transistores MOSFET en zona lineal es el audio y la radiofrecuencia, donde aún sobreviven sin rival muchas válvulas de vacío. En el resto de aplicaciones con requisitos lineales se ha sustituido esta operación por el PWM, más eficiente, lineal y claramente superior para frecuencias bajas menores a 1Khz y aplicaciones que no requieran una gran precisión (0,1% min), como control de motores, servos...
La necesidad de optimizarlos para conmutación y una baja resistencia del canal ha traído nuevas formas de fabricarlos: V-MOS, Trench-FET, T-MOS, HEX-FET..., y el resultado es que el voltaje de estrangulamiento disminuye con el aumento de temperatura, a diferencia de los FETs clásicos de Hitachi, que no requerían ningún tipo de compensación térmica. La compensación térmica requerida es finalmente ajustada por un multiplicador de VBE, pero degenerado con un diodo que no está en contacto con el radiador.
Los modelos utilizados son HEXFETs de International Rectifier, los famosos IRFxxxx. En un principio, en mi versión empleé los IRF640 e IRF9640, dos modelos de 150W en TO-220, que para dar 25W de salida van más que sobrados, pero los hay más adecuados como los IRFP240 e IRFP9240, también de 150W, pero en cápsula TO-3P.
La diferencia entre estos dos modelos es que los TO-3P soportan más potencia de manera continuada porque la resistencia térmica ente el silicio y el radiador es notablemente menor. Pasa de 1.5 a 1,07, un 30% menor. Esto implica que cuando el radiador de 0.5ºC/W esté a 50ºC en el TO-3P, el silicio del transistor estará a 103ºC, mientras que en el TO-220 estará a 125ºC. El límite son 150ºC, y cuanto más frío esté el transistor más lineal será.
Por eso, es posible funcionar con los IRF540 e IRF9540, IRF640 e IRF9640, pero yo sólo puedo recomendar los IRFP240 e IRFP9240 con potencias de igual o más de 80W.Por último, el montaje es mucho más sencillo ya que los transistores se montan en la placa y se acoplan al radiador, en vez de montarlos en el radiador y emplear cables para unirlos a la placa
Asignatura: EES.
Alumno: Pedro Jose Contreras Urbina
Fuente:http://www.pcpaudio.com/pcpfiles/proyectos_amplificadores/ssub-mosfet/Ssub_mosfet.html
domingo, 27 de junio de 2010
Power MOSFET Bridge Rectifier
The principle is simple: whenever the instantaneous value of the input AC voltage is greater than the rectified output voltage, a MOSFET is switched on to allow current to flow from the input to the output. As we want to have a full-wave rectifier, we need four FETs instead of four diodes, just as in a bridge rectifier. R1?R4 form a voltage divider for the rectified voltage, and R5?R8 do the same for the AC input voltage. As soon as the input voltage is a bit higher than the rectified voltage, IC1d switches on MOSFET T3.
Just as in a normal bridge rectifier, the MOSFET diagonally opposite T3 must also be switched on at the same time. That?s taken care of by IC1b. The polarity of the AC voltage is reversed during the next half-wave, so IC1c and IC1a switch on T4 and T1, respectively. As you can see, the voltage dividers are not fully symmetrical. The input voltage is reduced slightly to cause a slight delay in switching on the FETs. That is better than switching them on too soon, which would increase the losses.[...]Author: Wolfgang Schubert – Copyright: Elektor Electronics Magazine
Nuevo modelo matemático describe el comportamiento de MOSFET a altas frecuencias con mayor precisión.
El modelo desarrollado por Philips y la institución educativa, se basa en una aproximación al potencial de la superficie a través de todo el régimen de operación, mientras que el actual modelo se basa en una descripción simplificada de dos regiones límites y técnicas matemáticas de aproximación entre los dos límites.El nuevo modelo fue denominado PSP, debido a que fue construido tomando como base el modelo MOS 11 de Philips y el modelo SP de la Universidad del Estado de Pensilvania.En la presentación de este modelo, se mencionó que PSP provee de una mejor descripción del comportamiento del dispositivo cuando opera a altas frecuencias, como por ejemplo los dispositivos de RF utilizados en una gran variedad de dispositivos inalámbricos.
embedFlash
Adicionalmente se señaló que no se incrementa sustancialmente la complejidad del modelo, gracias a la resolución de añejos problemas del modelaje de transistores, como la incorporación de la corriente de compuerta, el ruido inducido de la compuerta y los efectos estáticos.“Creemos que nuestro modelo representa un significativo avance en el modelaje de transistores”, dijo Gennady Gildenblat, profesor de ingeniería eléctrica de la Universidad del Estado de Pensilvania. “El nuevo modelo PSP predice de manejar más precisa el comportamiento del transistor a frecuencias de hasta 50GHz”.
300W FM amplifier with MOSFET technology
Supplied with a cooling fan for worry free 24 hour operation.
Technical specifications:- Power Output 300W - Power Input: 1W (1-10W with this)- Harmonic Output -60dBc - Spurious Output -80dBc - Input Voltage (PA module) 48 volt 7.5 Amps - Input Voltage (Power supply) 90-270 VAC - Dimensions, PA 185mm x 100mm x 75mm (100mm inc 80mm fan)
If you need to drive this amplifier with more power, have a look at our attenuators here. It will than be possible to drive this amplifier with any power level between 1W and 10W. Also do not forget that a small attenuator (1-3dB) is actually recommended as it ensures proper load to the driver in all conditions and increases stability of the entire system. Such attenuators are typically used in professional gear.
Alumno: Pedro Jose Contreras Urbina
Fuente: http://www.neoteo.com/puente-h-con-mosfet-para-motores-cc.neo
Transceptor de potencia, el Mosquito de EA3FXF
Asignatura: EES.
Alumno: Pedro Jose Contreras Urbina
Fuente: http://lu7hz.blogspot.com/2009/11/transceptor-de-potencia-el-mosquito-de.html
Uso de amplificador usando MOSFET
Transmisor QRP de un transistor MOSFET de OH1TV
Alumno: Pedro Jose Contreras Urbina
Fuente: http://lu7hz.blogspot.com/2010/01/transmisor-qrp-de-un-transistor-mosfet.html
Puente H con MOSFET para motores CC
Los interruptores reemplazados por transistores MOSFET dentro del puente H y la circulación de corriente para lograr los dos sentidos de giro.Para obtener un sentido de giro determinado (cualquiera), tal como habíamos analizado en los ejemplos iniciales, los transistores MOSFET IRFZ44N mostrados en imagen deberán comportarse como verdaderas llaves conmutadoras. Tal como se desprende de la hoja de datos del transistor empleado, para que este tipo de transistor MOSFET de canal N conduzca a pleno, ofreciendo la menor resistencia entre Drain y Source, la tensión de Gate respecto a Source deberá ser más positiva y el orden de los 2 a 4 Volts. Si asumimos que el transistor Q1 (en un sentido de giro) y Q3 (en el otro sentido de giro) ofrecen la mínima resistencia, el potencial de 12 Volts que alimenta los Drains respectivos pasará (según el giro seleccionado) hacia el motor, tal como muestra la figura superior.
Pero volviendo sobre la teoría, para que en el Source existan los 12Volts, en el Gate debemos aplicar una tensión entre los 14 y los 16 Volts, es decir, 2 a 4 Volts por sobre el Source. De lo contrario, la tensión necesaria para activar el transistor a la máxima conducción se descontará de la tensión de alimentación y al motor le llegarán 10 Volts o menos. De este modo, tendremos una máxima circulación de corriente a través de Drain – Source para hacer girar el motor al máximo, con una diferencia de potencial de 2 Volts o más entre estos dos terminales del transistor. Esto equivale, según la fórmula de potencia, que 2 Volts multiplicados por la máxima corriente del motor será una potencia que disipará en forma de calor en el transistor. Cuanto mayor sea la corriente para hacer funcionar el motor, mayor será el calor generado por los transistores, ergo, mayor será el tamaño de los disipadores. Esto, por supuesto, hablará muy mal del diseñador del circuito quien nunca comprenderá por qué calientan tanto los transistores de las ramas superiores.
sábado, 26 de junio de 2010
MOSFET de potencia para aumentar la eficiencia en fuentes de alimentación
STMicroelectronics anuncia un nuevo MOSFET de potencia, el STV3000NH02L, desarrollado con una tecnología innovadora, ribbon-bonding que logra una Rds(on) típica de 800 micro-ohmios (0.8 mΩ), para reducir las pérdidas e incrementar la eficiencia en las fuentes de alimentación. Este nuevo dispositivo, de canal N, de elevada corriente, está particularmente indicado para fuentes de alimentación con configuración en paralelo, usadas para aumentar la fiabilidad del sistema en aplicaciones con servidores.
El nuevo transistor de 20 V, que también es ideal para reducir las pérdidas de rectificación secundaria en convertidores DC-DC de alta eficiencia, ofrece una excelente protección ante situaciones de cortocircuito, con un tiempo de desconexión muy bajo.
La configuración en paralelo de fuentes de alimentación suele ser utilizada para ofrecer redundancia en sistemas críticos o incrementar la capacidad. Originalmente, se usaron diodos para esta función, pero fueron reemplazados por MOSFET para lograr mayores prestaciones. Ahora, la mínima pérdida del STV300NH02L supone un nuevo paso adelante en la eficiencia de fuentes de alimentación.
más info.
Asignatura: EES.
Alumno: Pedro Jose Contreras Urbina
Fuente: http://www.elektor.es/noticias/mosfet-de-potencia-para-aumentar-la-eficiencia-en.374049.lynkx
viernes, 28 de mayo de 2010
MOSFET: Metal Oxide Semiconductor Field Effect Transistor
MOSFET significa "FET de Metal Oxido Semiconductor" o FET de compuerta aislada
Es un tipo especial de transistor FET que tiene una versión NPN y otra PNP.
El NPN es llamado MOSFET de canal N y el PNP es llamado MOSFET de canal P.
Una delgada capa de material aislante formada de dióxido de silicio (SiO2) (también llamada "sílice" o "sílica") es colocada del lado del semiconductor y una capa de metal es colocada del lado de la compuerta (GATE) (ver la figura)
En el MOSFET de canal N la parte "N" está conectado a la fuente (source) y al drenaje (drain)
En el MOSFET de canal P la parte "P" está conectado a la fuente (source) y al drenaje (drain)
En los transistores bipolares la corriente que circula por el colector es controlada por la corriente que circula por la base. Sin embargo en el caso de los transistores FET, la corriente de salida es controlada por una tensión de entrada (un campo eléctrico). En este caso no existe corriente de entrada.
Los transistores MOSFET se pueden dañar con facilidad y hay que manipularlos con cuidado. Debido a que la capa de óxido es muy delgada, se puede destruir con facilidad si hay alta tensión o hay electricidad estática.
Asignatura: EES.
Alumno: Pedro Jose Contreras Urbina
lunes, 24 de mayo de 2010
Aplicaciones:
La forma más habitual de emplear transistores MOSFET es en circuitos de tipo CMOS, consistentes en el uso de transistores pMOS y nMOS complementarios. Véase Tecnología CMOS
Las aplicaciones de MOSFET discretos más comunes son:
•Resistencia controlada por tensión.
•Circuitos de conmutación de potencia (HEXFET, FREDFET, etc).
•Mezcladores de frecuencia, con MOSFET de doble puerta.
Ventajas:
La principal aplicación de los MOSFET está en los circuitos integrados, p-mos, n-mos y c-mos, debido a varias ventajas sobre los transistores bipolares:
•Consumo en modo estático muy bajo.
•Tamaño muy inferior al transistor bipolar (actualmente del orden de media micra).
•Gran capacidad de integración debido a su reducido tamaño.
•Funcionamiento por tensión, son controlados por voltaje por lo que tienen una impedencia de entrada muy alta. La intensidad que circula por la puerta es del orden de los nanoamperios.
•Un circuito realizado con MOSFET no necesita resistencias, con el ahorro de superficie que conlleva.
•La velocidad de conmutación es muy alta, siendo del orden de los nanosegundos.
•Cada vez se encuentran más en aplicaciones en los convertidores de alta frecuencias y baja potencia.
Asignatura: EES.
Alumno: Pedro Jose Contreras Urbina
Fuente: http://aeronuts.foroactivo.com/novedades-f15/iniciacion-a-los-mosfet-uso-en-airsoft-t130.htm